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Abstract

A fully dynamic method for shear flows is presented that treats the short time-scales
associated with Newlonian viscosity (or short relaxation processes) and shear-wave prop-
agation implicitly, while treating the long relaxation processes explicitly. The method is
generalized to flows with non-constant strain-rate histories in the context of the well-known
fiber-drawing problem. The linearized stability of the methods is analyzed, and extension
of these methods to planar flows is given. The approach taken in the case of non-trivial
deformation histories is that of an Oldroyd difference quotient (ODQ) that approximates
the convected derivatives of the differential constitutive equation in Lagrangian fashion
along the portion of the streamline upstream of the stress evaluation point. Techniques
based on earlier ideas of drift-function tracking are used to develop a weighting scheme for
the ODQ that permits the use of low order, Cp stress elements. The numerical methods
are discussed and analyzed in the context of a Johnson-Segalman fluid model with added
Newtonian viscosity. The resulting initial-boundary-value problem is globally well-posed
and possesses the key feature: the steady shear stress is a non-monotone function of the
strain rate. Such models will be scen to display the spurt phenomenon in plane Poiseuille
flow and apparently related phenomena in step strain experiments.~ Analysis of the nu-
merical methods shows that the ratio of short to long relaxation times or the Newtonian
viscosity ratio is a key parameter in the stability and accuracy of the methods. When this
is properly accounted for the techniques described here work well in shear and e*{tensmnaI

flows and show promise for two-dimensional flows. - s
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1. INTRODUCTION

We consider the equations of motion, stress, and continuity for a Johnson-Segalman
fluid {1] with added Newtonian viscosity. The Johnson-Segalman model should be viewed
as a simple constitutive equation representing features which are characteristic of non-
monotone stress/strain-rate constitutive relations [2 - 10] (see Fig. 1); many other models
have these features, and some are known to produce the kind of dramatic and interesting
rheological behavior discussed in this paper in the context of Johnson-Segalman [2,4,6].
There is some controversy among rheologists as to whether the predictions of such models
are physically correct; we believe so, and have argued our case extensively elsewhere [2,4 -
7,10]. Our thrust here is numerical, and we aim to develop methods of general applicability
to models with and without non-monotone behavior. At very least, the success of our
methods in shearing flows in the ‘spurt’ regime induced by non-monotonicity can be viewed
as pushing the numerical method to the limit in order to test its robustness in the presence
of strong instabilities.

The equations of motion, stress. and continuity in terms of velocity, v, total stress, S,
extra stress, 7, strain rate, &, and pressure, p, for the Johnson-Segalman model are

0[@: (v-V)v ]—V-S

S=-pl+2e+rT

BrAT=2 (1)
ppr' :%— +(v- V)T—TVV—(VV) T+ (l—a)(Te + eT)

Veov=0.

The equations are in nondimensional form; a is a ratio of Reynolds number to Deborah
number: time has been scaled by the dominant relaxation time; € is the ratio of Newto-
nian viscosity to polymer zero shear viseosity or, alternatively, the raiio of duminaut to
secondary relaxation time: the dimensional form of the cquations and further details of
the dimensional analysis may be found in Refs. [2] and [5]. The parameter, a, is a nondi-
mensional number that relates the moticu of the polymer molecules to the mean motion
of the continuum: this motion is non-affine when a # 1: we consider only a > 0 here. In
Refz. [5.6.7]. it is shown that the Newtonian viscosity term is gencrally representative of
thie presence of shorter relaxation times, widely separated from the dominant relaxation
time that can occur in pure polymer systems as well as polymer/solvent systems.

In Refs. [3.6.7]. the reduction of Eqs. (1) to transient shear ﬂows‘ is discussed. Fol-
lowing Ref. [3]. for @ < 1 one may also scale o, v, and f by (1 —a®)!/2; the result is

avy =0 + v, + f
[oF] =(Z+1)l’;—(7
Zy=~ov, — 2 .

—_
3]

In the absence of Newtonian viscosity (1.e., when ¢ = 0), the system (2) is hyperbolic as
long as Z + 1> 0. and the speeds, ¢, are

(3)
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Fig. 1 Stress vs. strain-rate for a Johnson-Segalman model. Di-
mensional units: values characteristic of actual materials. Values
of ¢ give neutrally stable (1/8) and critical cases (0.015); ¥ = 2¢,3.

Otherwise the system has elliptic character, and the type change corresponds to a loss of
evolutionarity. When Newtonian viscosity is present (i.e., when ¢ $ 0), it can be shown
that the system is always evolutionary [8.9]. When Newtonian viscosity is absent the
system can exhibit Hadamard instabilities [8.9).

2. NEW TRANSIENT ALGORITHMS FOR SHEAR FLOW
"n this section we briefly describe two test problems that are solved by our numerical
techniques for shear flow. We then describe the numerical method, arrange the algorithm
in suitable form for a linearized ‘matrix’ stability analysis [11.12], and derive the resulting
stability bounds.

A. Spurt: In Refs. [2.4 - 7], the phenomenon of spurt observed by Vinogradov, et al. [13]
is modeled exploiting the non-monotonicity of the Johnson-Segalman models steady stress
vs. strain-rate curve, using system (2) and boundary conditions appropriate for pressure-
driven flow (sec Fig. 2). The phenomenon of the dramatic increase in capillary or die
throughput at a fixed eritical stress. mmdependent of molecular weight, can be reproduced
with remarkable accuracy. The resulting flow regime is characterized by a layer of high
shear rate near the wall, in which the extra stress plays virtually no role in equilibrating the
driving pressure gradient. Outside the layer, the longer relaxation process is the dominant
wad-Dhearing mechanism. During the process of spurt, there are large oscillations in stress
and shear rate, and material points that end up inside the layer are alternately subjected
to high and low rates of shear until effective steadiness is achieved.

B. Step straina: We consider an idealized model of the classical step strain experiment

3
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Fig. 2. Problem domain for channel flow driven by a pressure
gradient (plane Poiseuille flow). The dimension, h/2, is scaled to
1/2 in the nondimensional equations. T = o +¢€v, is the total shear
stress.

(3,10,14,15] that combines Egs. (2) with boundary conditions

v(0,t) =0
v(l,t) = ¢(t) (4)
0:(0,t) + €v;.(0,8) =0 .

We thus have Couette flow [3] in which the upper wall is a plate that moves suddenly,
shortly after time t = 0. The picture is similar to Fig. 2, with the symmetry line replaced
by the fixed wall. whose coordinate is taken to be z = 0 in nondimensional units; the
moving wall is at r = 1 (see Fig. 5, below). The classical problem is properly posed [10}
by taking the limit of the sequence of solutions to this problem as g tends to a multiple
of the Heaviside function, which is the step in strain. v, based on plate motion. In this
context, we can see the consequences of adding an arbitrarily small amount of Newtonian
viscosity, ¢, or omitting this term. We consider the Lodge-Meissner function:

. T11 — T2 2Z .

¢(v) = lim ——— = ——; . 5

(v) = b —= 3T (3)

where T := o + cv,, and 4 is the strain calculated from system (3), which is a factor
of (1 —a?)!/? smaller than the corresponding strain of system (1) (the a = 1 case is

treated as a special case). Note that the total shear stress, Sij2 or T, appears in the
denominator of Eq. (5). Eq. (5) was intended to apply in situations where there is no flow
with relaxing stresses and thus where there is no difference between S15 and 112 (or T and
@): here we have chosen to use the physically measurable, total stress, for reasons that
will become clear later. The Lodge-Meissner relation [10,14,15] states that the limit of &
as the step becomes instantaneous is observed to be 1 in real polymer systems. For the
Johnson-Segalman model, Eq. (5) can be evaluated analytically, under the assumption that
momentum effects can be ignored (even though the step is assumed to be instantaneous)
and the flow remains homogreneous for all time [10]. The result is plotted in Fig. 3. The
Johnson-Segalman model has been criticized for the obvious failure to satisfy the Lodge-
Merssier relation and the fact that the shear stress evidently changes sign as a tunctioz of
strain, as evidenced by the pole in Fig. 3.

C. The numerical method for shear flow: In these shear-flow examples, Newtonian viscos-
ity dominates in high shear-rate regions or times; there the Eqs. (2) have the parabolic
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Fig. 3. The Lodge-Meissner function with a = 0.95. Values for
v < 5 are close to 1. The pole is at v = 10. Another pole is at
~ & 30; poles periodically repeat.

character of Newtonian flow; implicit treatment of Newtonian viscosity is essential. In the
regions or times of lower shear-rate, where the longer relaxation time dominates, there is
wave propagation at the elastic wave speed given by Eq. (3), and the equations, though
not formally classifiable, behave like a hyperbolic system with a small amount of added
viscous damping. For high polymers of the type used by Vinogradov, et al. [13], the wave
speed is finite but very high, and numerical methods must respect it by either the time-
step restrictions of explicit integration or the cost of implicit integration. On the other
hand, phenomena such as the latent development of spatial inhomogeneity in step strains
take place in several step rise-times; phenomena like Vinogradov’s spurt take time on the
order of many dominant relaxation times to unfold. In either case, the time scale of the
interesting physical phenomenon is orders of magnitude longer than wave traversal times.
To capture such phenomena by explicit methods, controlled by element wave traversal
times, is totally out of the question. The following method was developed to confront this
difficulty without requiring implicit iteration on the nonlinearities [2,5].

— Spatial discretization: We use standard finite element interpolations [11,12]. In what
follows, the definitions of shape functions, matrices, etc. are at the global (rather than
element) level. The shape functions are linear, one basis function per node, as picture in
Fig. 4. Following standard practice, the nodal values, v;, are functions of time alone, and
the shape functions, N;, are functions of space alone:

[N)(.I),Ng(.r), feay NM(.‘II)] = []V]

vl(t)

vq(t 6
v = [N] : (*) = [N] {v} . ©)

;)M(t)
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Fig. 4. Velocity trial/test functions for Galerkin method. The N;
are basis functions for piecewise linear approximations for velocity.
Stresses are assumed to be plecewise constant on cells between
nodes: cells have length L and may vary in size.

We use standard "B-Matrix™ notation for the matrix relating strain rates to nodal values.

Thus

vy = (Bl {v} = [N, Nooo oo Nag ] {v} . (7)
The acceleration can be written as follows:
Uit
i U2 ¢ o .
vy = [V] : = [V] {¢} . (S)
VAL e

Tlie viscoelastic contribution to momentum diffusion is

{ i
/qs,ad.r:/ {8} (B) odr | (9)
0 o

in which we shall assume ¢ is elementwise constant. The Galerkin form of the momentum

equation 1s




1 l !
/ advidr + ¢rodxr + 6/ ¢rvdr =0, (10)
0 ] 0

for all admissible ¢, at each ¢ > 0. When the admissible test functions, ¢, are expanded
in terms of the N;, the spatial discretization of momentum equation becomes [11,12]

[M]{a} +[K]{v} + {W} = {0} , (11)

where

(a) = 20} = {3}
!
(M] = /0 o[ N|T[N]dz
1
{W}:/O (B] o dz (12)

{
(K] = A 'BIT(B] dz

[N] = [Vi(2). No(), ..., Nar(2)]
[ ] [ trsd 2,:,....;7\/\[‘:],

— Time differencing: The time differencing is based on a standard gencralized trapezoidal
schieme [11.12].

{l'n+1} = {l'"} + At [(1 - C){(ln} +C{an+l}] ’ (13)

where ¢ > 0 1s a parameter of the method. A predictor for the viscoelastic contribution to
the shear stress (the extra stress) is given by a mixed difference, forward on the stress and
nonlinear terms and backward on the linear strain-rate term. Z and o are assumed to be
constant on cach element and advanced by

~

n — 0p -
y +1Af — = Zn(:)y + (V2)pyy —On - (14)

Thie momentum equation is solved based on this prediction. and a corrector/Z-update
cyvele is used for both stress equations.

&n—;}-l _0.'71 ~ -
—ar =(Zn+1)(tr)yyy — %n (15)
Zn+1 "Zn -

—T = _an-f-l(l'r)".;,l - Zy . (16)

Combining the space and time discretization of the momentum equation, we have

(M{ans1} + R {vas1} + {TWasa} = {0) . (17)

T




where {W,11} is a predictor of the viscoelastic contribution,

!
{Whi1} =/O[B]T0n+1d$- (18)

With the discretization of system (2), whose stability is analyzed below, corrector is

not used, and there are no “~"ed corrected quantities. We thus have

Ont1 — On
_+—/13-t—— = Zn(vx)n + (vz)n+1 ~0On, (19)

and Z given by Eq. (16) (with &,4; replaced by o,4+;). It is possible to apply the o-
corrector in the frozen Z case, but numerical experiments show that this procedure is
less stable than the one analyzed here. Furthermore, experiments also show the nonlinear
algorithm with the predictor-corrector scheme “nearly” unconditionally stable when pa-
rameters are selected according to frozen Z analysis, without the corrector step. We should
emphasize that we are analyzing a somewhat simpler algorithm - without the correction

cycle — to approximate the behavior of the more complicated algorithm. Experience shows
that this is a valid simplification.

— Computational arrangement(momentum): When we use Eq. (19) to predict 0,4 in
Eq. (17), the result is

!
(et} :/ [B}To,,H dzx
0

(20)
{ {
= MNENN{vpp1} + At/ Za|B)T[B){va}dz + (1 - At)/ (B)To, dz .
0 0
Substitution into momentum equation yields
(M {anst} + (¢ + ADIE) (vt} + {(Was} = {0} (21)
where
_ Zotem ,
(W) = At/ Z(B)T[B]{vn) dz + (1 - At)/ (B|Tondz . (22)
0 0

Note that the for frozen coefficient system (2), the Z-term in {ﬁ’n.{.l} can be written as
AMZ[K|{va}.

— A reeursion for {1V,4, }: From Eq. (20) and the definition of {ﬁ"nﬁ }, we have

!
/ [B]TO'n+1 dr = At[[\']{vn+1} + {"Vn+l} . (23)
0
Cycling back to n+1 — n yields

!
/ [B]Tan dz = At[K]{va} + {Wa} . (24)

0
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We substitute into definition of {Ii',,ﬂ} to get

{
{ﬁf,,ﬂ}=(1—At){ti',,}+At(1~4t)[1\']{v,,}+_4.z/0 Z,BJT[Bl{va}dr . (25

In the frozen Z case, Eq. (25) becomes
(Wap1} = (1= A){W0) +(Z + (1 = A AR (v} . (26)

— Quasilinear difference equations: The fully nonlinear system (1) can now be written in
recursive form,

[Ml{ant1} + (e + A)[K]{vns1} + {Wasa} = {0)

!
{Wasi} = (1= A0 {1} + At(1 - A1)[K]{va} + At/o Z BT[B){va}dr  (27)

{tns1} = CAt{ans1} = {va} + (1 = ()At{an} |

after each cycle of which, Z,4, is obtained from Eq. (16) (6441 = 0py1); thovgh it is not
necessary for algorithmic closure, 0,4, can be obtained from Eq. (19) after each cy.le.
The frozen coefficient form of Eq. (27) is

[MH{anti} + (s + QO[N] {vas1} + (Wap1} = {0}
{Waii} = (1 A0{11,} + A1 = AD[K]{r,) + AtZ[K){v,) (28)

{tns1} = CAt{ans1} = {vn} + (1 = ) At{an} .

Note that for the current scheme ¢, Z, and (vz)n = [B]{v,} are all piecewise constant
m r.

— Modal decomposition: Let (] be a matrix of generalized eigenvectors of [I] — s[1/].
normalized so that

(2T IR)[Y] = [9] = diag(w?)

(29)
(eT (AL ] = (1)
We will investigate the stability of the frozen coefficient linearized system. Let
{ane} = [#}ansr) .

{tns1} = [P]{ins1} .

The momentum equation gives




{&n+l} +(e+ At)[Q]{f""'H} + {[i-’i*l} =1{0} . (31)

where

(Wi} = [T {Fp) - (32)

and writing a typical component of {@,4+,} as simply @, 4.

W
2

Suppressing the subscript
etc. The decoupled system is

An+1 + (5 + At)""‘zvn-{—l + I'i'n-(-l =0
Wapr = (1= AOW, + At(1 — AP, + AtZw?u, (33)
Un41 — C;\tan—kl =v, + (1 — C)Atan .
Though « = 0 1s ruled out by boundary conditions in the problems considered here, the
lowest frequencies in the mesh are physically meaningful, and the w — 0 limit must be

considered. It is easy to see with our simple elerrents [11,12] that the highest frequencies
are mesh-dependent, and

2 A 4
Wmax = MAX 57 (34

D. Stubility analysis: Lhe geals of stability analysis are twofold: first. to give a prior
estimate of the eritical time step, if any, and second, to assure that the numerical mrethod
doces not have the effeet of artificially suppressing or delaying the onsct of the instability.
The onset of spurt corresponds to the mstability of the frozen-cocfficient linearization. We
will then analyze the diserete system (33) applied to the same frozen-coefficient system
and find that the srability in the diserete system occurs at precisely the same values of
the parameters as the exact linecarized system. The exact solution can be expanded in

Fonrter series: a typieal mode s

(o t) = f(t)sinwer olr.t) = g(t)coswr . (35)

Substituting into syvstem (2)

af'(t) = = f(t) = g(t)e (36)
g'(t) =(Z + D f(t) —g(t) .
The system cigenvalues are
~ 2 sl 2 S )w?
\__M/;wl:t (s /2+1)_(2+10+) . (37)

Re seg € 0only if Z+14¢ > 0 (decaying solutions) — the Equation Stability Condition.
The phase-plane analysis of Refs. [6.7] shows that this condition is the same coudition that
characterizes the end of the ‘latency” period and the onset of the spurt instability. We
shall derive stability bounds assuming that «w € (0. +x).

10




~ Tlhe stress relaxation condition: The recursion for 11, is based on the underlying O.D.E.
for o, which in time-discrete form is

N

On+1 = (1 - At)an + At(zn(vz)n + (v:)n-H) . (3 )

which, when there is no flow, is
Tn+1 :(1—-At)0’n . (39)

This 1s a discretization of (exponential) stress relaxation, the most fundamental non-
Newtonian phenomenon. It is no restriction to assume that At is always small enough
for accurate stress relaxation. The non-oscillatory stress relaxation condition (NOSRC) is

then,

At < 1. (40)

The NOSRC is necessary to accurately reproduce the lowest frequency phenoniena.
To analyze the stability of higher frequencies, we write the first equation of Eqs. (33) in
step noand n 4+ 10 solving this for a,, a,4+1 and substituting into the remaining equations
of the system (33). results in th - following 2x2 system:

{UW}Z[A]{H,I}\ 41)
Un+1 Un

\\'h(‘l'(‘ "
[‘\J Tl acAat+(1=0At AN Z40)+ -1
A Y

6 =6(At) = (1— 21
J=(1=()Ate?
A= 1- (A’
=4+ At

0y

We can bound the spectral radius by using the invariants of [A] (see [11.12]):

ALH I+ 0)+ 3 -1
H+g_\t (£ +6)+
a (431
ay = det[A] = X (03— 1) = (1~ )AL Z +6))

121 —

ap = fI'[A} =

— LI

Spectral radius of [A] being < 1 is characterized by [11.12]

(1-2-4'-1 (7-_>+1
5— Sa S —

< <

Car <1, (44)
and algebraie growth is ruled out by
-l<a <1, a;y=1. (45)

11




— Extreme frequencies: It turns out that by considering the w — 0 and w — oo behavior
of Eqgs. (43) - (45), the most salient features of the method described here can be identified;
a more detailed analysis is given elsewhere [16]. When w — 0 we find that

al—*%(e-{-l), a, — 6.

The roots of equation,
2 —2as+a; =0, (46)

are #, and 1; thus requiring |f| < 1 implies At < 2. This condition is irrelevant, since the
NOSRC supercedes.
When w — oc,

f-1_ _(1-9)

f— koo, —
and
(Z + ) At*w? (Z +6)At
A C€ ’
=0
1 (Z+6)At 1-¢
ay — = 10— — - ,
2 3 ¢
61-0) | (1=Q) (Z+0)At
az — — + s .
¢ ¢ €
Thus the quadratic Eq. (46) has roots
1- Z + 60)At
=128 g (B30 (47)

G 3

For ( < 1/2 conditional stability is anticipated, and specific analysis for large w is
required. This analysis is carried out in detail in Ref. [16], where it is found that there
is a dependence of At on Ar? that is characteristic of parabolic problems {11,12], arising
from the Newtonian viscosity term. Since the algorithm is semi-implicit and requires the
factorization of matrices, there is no gi.in in taking ( < 1/2. In Ref. [16], it is also shown
that for ¢ > 1/2. there are no interior values of the spectral radius between w = 0 and
« = oc higher than those bounded by the NOSRC and by requiring that the roots of
Eq. (47) be less than or equal to 1. This implies the following stability summary for
¢=1/2
(1) From =6+ (Z +6)At/: <1, we deduce that (e +Z -1)At -2: <0. fe4+Z2-1<0.

there 1s no condition. Otherwise

2¢




(2) From -0 + (Z 4 0)At/é > ~1, we deduce that (Z+14+e)At >0. If Z+1+¢ >0,
there is no condition. Otherwise the uumerical method and the linearized equations
are unstable.

From the phase plane analysis of Refs. [5,6,7], it can be deduced that for the range
of parameter space appropriate for modeling Vinogradov’s polyisoprenes {13}, Z 1s always
negative unless it is forced to be positive by artificial initial conditions. Furthermore, Z < 0
whenever the primary normal stress difference, V;, is positive, as it is for any steady flow
of a Johnson-Segalman fluid. Circumstances in which Case (1) above would hold require
that N be substantially negative and have not been observed by the authors. However,
the linearized equations do not account for the Z-equation, thus could apply equally well
to a shear thickening fluid in which Z > 0 is likely; in such cases, the condition of Case (1)
could apply. In Case (2), whenever the Equation Stability Condition holds, the algorithm
is essentially unconditionally stable for all time steps smaller than that implied by the
NOSRC, which is an accuracy condition, independent of Az. When the exact equations
arc unstable, the numerical method also reproduces solutions that grow rather than decay
in time. Thus the onset of the spurt instability is not suppressed by an artificial, numerical
increase in the value of Z +1 + ¢.

The key to the success of the algorithm lies in the first :quation of system (27) that
predicts the extra stress using the zero shear viscosity implicitly and the non-Newtonian
contribution, represented by the nonlinear Z term, explicitly. No nonlinear equations are
solved when time is advanced according to the second equation of system (27} , but the
fastest wave speed is that at zero shear, as can be seen from Eq. (3) and the fact that
Z < 0. There is no restriction on the time step in the linear stability analysis of Eqs. (6) -
(13). and in practice, time steps as large as a half million element wave traversals can be
stably employed. However. the analysis of Refs. [5.6,7] shows that when ¢ is small, the
shear-flow problem is extremely stiff: there is a characteristic response time of the system
of O(2) (the “Newtonian phase”) in which the polymer contribution to the shear stress, o,
develops. During this short period, Z changes substantially but then continues to change
on a time scale that is typically much longer, determined by the dominant relaxation time.
which is scaled to 1 in the nondimensional equations. In order for the slow change in Z to
be accurately resolved, the short-time change in Z must have been accurately resolved. In
Ref. [3] it is shown that the stiffness requires time steps on the order of fractions of ¢ at
carly times to obtain accurate solutions. Time steps can be lengthened somewhat during a
quicseent period (“larencey™), but. as shown in Refs. [6.7], the O(¢) scale reemerges in the
dynamic spurt process. The point is that the semi-implicitness can be used to accurately
smooth out wave propagation at early time, since elastic waves play no important role in
the spurt phenomenon; however, this leaves an irtricate interplay between two additional.
widely separated, time scales that must be properly accounted for in numerical solutions.

3. NUMERICAL RESULTS FOR STEP STRAINS IN SHEAR FLOW

To sununarize what occurs in numerical simulations: when ¢ # 0, the total shear
stress, T, has a near §-function contribution, and for t > 0 there is spatially homogencous
stress relaxation when a = 1. Spatial inhomogeneity develops for a < 1 (at sufficiently
large 4 [10]). With ¢ = 0, the stresses are bounded for all time if a = 1, but there is

13




t=0.05 t=0.10 t=0.30

CUDII770 7870820077770 00000080 0000770007000 00 000800008 00000000070000000800000000000000080708070700707272
YNV VNV Y Y N N Ny v Y Y S XX
FI/IllrllIIIIII/t//l/I’/IlIl/lll/IIIIII/l/rtltlll’l’llll’l’/rlllll/llllII/I AR
222702200227 200270720 2707222022227 20222227222202202-208000722002022208782002080087208204220708202002027¢
RARARAAARARAAARARA R AR A AR AR AR A AR A AR AR AR AR AR A AR AR AR AR AR A AR
A A A A O e vy
TV 7l 77T T s 07 7 GI P TE0 0077707 F0 7000707077 7707070700 027000707700 00700000elrstttiriritttrsss
Y N Y Y N N N A AR NN A Y R RN

Fig. 5. Velocity profile as time evolves for dynamic solution of
system (2) with boundary conditions (4), a = O(1071%), a = 0.95.
¢ = 0.001417. and a step of duration 0.1 scc. At this average strain
of v = 12, the solution develops a spatial inhomogeneity in a latent
spurt with flow in the opposite direction from plate motion. The
fixed wall i« at = 0 and the moving wall at r = 1.

Hadamard instability if @ < 1 and v is sufficiently large. Thus the effect of Newtonian
viscosity is significant. For @ = 1, its presence does not make a difference in the satisfaction
of the Lodge-Meissner relation, but it does make an increasingly large difference in the total
force required to move the plate as the steps approach instantancous rise. For a < 1. the
Lodge-Meissner relation is not satisfied at large strain. but in the presence of Newtonian
viscosity, the computed solutions at large strain are not necessarily unphysical, as has
been claimed [13]. As is described in Ref. [10]. the failure to satisfy the relation can be
associated with an inhomogencons flow regime that develops some time after plate motion
has ceased (Figs. 5 - 7).

Apparently a similar phenomenon to spurt occurs in flows of a Johnson-Segalman
finid after a sudden step in strain. This is illustrated in Fig. 5: There is an initial period
in which an essentially homogeneous flow occurs. For smaller strains, roughly 4 < 5 for
data corresponding to Vinogradov, et al.s polyisoprenes, the homogeneity persists for
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Fig. 6. Local strain at the walls vs. time for dvnamic solution of
system (2), with boundary conditions (4), a = O(1071?), a = 0.95,
£ = 0.001417, and a step of duration 0.1 sec. At this average strain
of v = 8, the solution is inhomogencous at long times.

all time. For moderate strains. roughly 5 < v < 10 for Vinogradov’s data, a spurt-like
ihomogeneous flow develops while the stresses are relaxing and the flow has essentially
ceased. At moderate strains, the spurt is in the direction of plate motion. For large
strains, roughly 5 > 10. the spurt is in the opposite direction from the plate motion. as it
is in Fig. 5. These observations explain the inhomogeneity in local strain based on fluid
motion of Figs. 6 and 7 (in contrast to =, an average strain, based on plate motion). It is
imteresting to note that the formula of Fig. 3 is derived by ignoring momentum effects that
are responsible for the development of spatial inhomogeneity, but the position of the pole
in that formula correctlv predicts the direction of the spurt. These phenomena are not
fully understood at the time of this writing, but it seems clear that the criticisms of the
Johnson-Segalman model based on assumptions of spatial homogeneity are too simplistic.

4. HIGHER DIMENSIONAL FLOWS - FIBER DRAWING AND 2-D

To generalize these ideas to multidimensional flow requires approximation of the stress
gradients in the convected derivative of Eqs. (1). These can be avoided by observing that
the effective strain tensor [3(p. 486)] of the Johnson-Segalman model satisfies

E((t') = —E((t') (aé — w) (")
{E,m =1, (3
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Fig. 7. Local strain at the walls vs. time for dynamic solution of
svstem (2) with boundary conditions (4), a = O(1071%), a = 0.95,
e = 0.001417, and a step of duration 0.1 sec. At this average strain
of v = 12, the solution is inhomogeneous at long times, but the
inhomogeneity is reversed from what it is for strains on the other
side of the pole in the Lodge-Meissner function (see Fig. 3).

where ¢ represents historical time, and w is the spin tensor. A Lagrangian difference
quotient along particle pathlines can be used to approximate the whole convected derivative
of system (1) [3(p. 494)], and the time-discrete stress equations become

n+1 ~n T
D“T ~ T B Et+At(t)T E1+At(t) — 2én+l — " : (49)
Dt At '

where

"= T (x(t). 1), "= 1 (x(t + At),t), "= (x(E+ At),t + At)) . (30)

Since this formulation represents an approximation to the Oldroyd derivative [17] as a
difference quotient, we refer to it as an “Oldroyd Difference Quotient” (ODQ hereafter).
Thus the formulation of the simple shear problem can be employed with piecewise constant
stresses, since the full stress gradient fleld is not required. Existing particle tracking
methods can be used to evaluate the required strain tensors [18] with the velocity field
held fixed between time steps.
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The key to the success of the ODQ formulation of Eqgs. (50) is the calculation of an
appropriate value of 7. Eqs. (49) reduce the evaluation of the convected derivative to
the one-dimensional calculation of an ordinary derivative along a streamline, but along
that streamline, the basic stress approximations are piecewise constant. However, the
problem of extracting derivative information from a piecewise constant approximation to a
differentiable function of one variable seems preferable to the employment of 2D, Cy stress
fields and the evaluation of (weak) stress gradients. Here we propose scheme based on
a transit time-weighted average between the value of the stress in the element containing
x(t+At) and the value in the adjacent element upwind of x(t+ At) on the same streamline.
The weighting is tuned to recover O(At) accuracy in Eqs. (49). Approaches to 2D flows
that incorporate these features immediately suggest themselves; here we illustrate our
approach in the fiber drawing problem of Fig. 9 [19,20]. The mathematical and physical
ramifications of this simplified model of fiber drawing have been thoroughly investigated
elsewhere (see Refs. [19 - 21], and additional references cited in Ref. [22] for details);
furthermore, the finely-tuned methods of Refs. [19] and [20] seem to be the methods of
choice for this problem. Our purpose in solving this problem is to illustrate the potential
of the ODQ formulation in flows with non-trivial history dependence (i.e., the substantial
derivative does not reduce to an ordinary one) in a model problem which can be posed
in one spatial dimension, and which results in a relatively small system of PDEs. The
problem will also scrve to reemphasize the importance of proper numerical treatment of
multiple time scales in a rather different context from the shear-flow problem.

extruder swell

[}
1
thresdline :
1
]
1

/ LN

x

Fig. 8. The domain and coordinate system for the fiber drawing
problem.,

A. Mathematical formulation: We employ ¢he same nondimensionalization as used for
Eqs. (1) and (2); the nondimensional domain is the interval (0,1), and time is scaled by
the relaxation time [2,5], etc. In the problem domain, the polymer contribution to the
stress tensor (the extra stress) is assumed to be of the form [21]
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Fig. 9. Staggered grid for fiber drawing problem. Velocity, v and
area, A, are at grid points, while stresses, T and @, and velocity
gradient, v, , are at half-points. Problem makes no sense if velocity
changes sign in threadline; positive v assumed.

T 0 0
0 0 v

The velocity field is irrotational with gradients given by

Uy 0 0
Vv=12= |0 -1iv, 0 . (52)
0 0 ——%vl

The total drawing (x-direction) stress consists of extra stress, pressure (radial stress). and

Newtonian contributions:
T = N+ 3sv,, (93)

where

Ni=r—-=. (54)

In terms of these quantitics and the area of the fiber, A(z,t). the equations of motion. con-
tinuity and stress reduce to a 4x4 system [21], which, combined with boundary conditions
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aA(ve +vvg) = (TA);

A+ (vA); =0

T +vry — 2av, = —17 + 2v, (i
T+ Vv, +avy, = —wW — U,

v(0,t) = D,, A(0,t)=1, 7(0,t) =1, v(0,t) =0z .

Ct
(1

Our concern here is solution procedures of the stress equations and not the momentum
equation, so it i1s particularly appropriate to eliminate the latter, making the same reduc-
tion appropriate to Vinogradov’s data [13}, which leads to the system of ODEs analyzed in
the phase plane in Refs. [5,6,7). When « is formally set to zero in fiber drawing, however.
the result is a 3x3 system of PDEs

( Al == “UAI - UIA
7 = —vry — (1 = 2av;)7 + 2v,
J wy = —vw; — (1 +av;)w ~ v, (56)
A- =
0 = —VU, + '_f_/.._g‘:_‘*’__ .

The fourth equation is an algebraic relation that can be substituted into the first three
equations and be integrated with respect to r to give a closed, 3x3, hyperbolic system with
imrearal coefficients. The unknowns are two stresses and the area; the three wave speeds

are .

B. Finite difference discretization: We envisage that future planar and axisymmetric algo-
rithuns implementing the ODQ will employ finite element discretization of the momentum
eqiation: in the current reduced problem. it is straight-forward and instructive to use fi-
nite differences for all equations of system (33). Motivated by the finite element shear-flow
formulation. we use the staggered grid scheme pictured in Fig. 9. This makes stresses and
strain rates cell quantities, while area is a grid quantity. The algebraic relation between
strain rate and velocity gradient is approximated by

n .__ 1 n n
.’1 »— 5 (.‘1"1 +¢"1'n__1) 3

while a midpoint rule is used to obtain grid values of velocity.

vl = D,
m-—1 -
(58)
vy, =vp + Ar Z ()12 m>1.
=1

An explicit forward in time/backward in space difference scheme is used for the area

cquation.
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nArrtt—An

An+1 _ An
m m o _ —v m-—1 _ (5:)nA:1n

At m Az

(59)

(5)" = -;- [(vx):‘n+% + (v,:):l_%] .

Turning to the ODQ formulation for the stress equations, we begin by observing that

the transit time between two points, z and y, on the threadline in a steady velocity field,
v(z,t) = u(z) is given by [23]

I dé
z,y) = —_.
@)= [ (60)
This is a simple example of a “drift function” [18]; it will be used to define the appropriate
components of 7". Since we intend to apply the ODQ to finite element schemes in the
future, it is appropriate to use finite element interpolations of the kind defined using [V]
in Sec. 2.C and pictured in Fig. 4 to provide interpolate velocities between grid points. We
further approximate velocities as being constant between time steps, so that the steady
velocity field u(z) in Eq. (60) will be completely specified by nodal/grid values. Referring
to Fig. 9, we find that

1—+—;‘:‘1§—1))A1:

8 ==6(8ay,Tm—1) = i (% ( ) (61)

Um — Um-—~1

and

(4 (1+32=2)) Az

b2 1= (2ot €u) = — ot (62)
We approximate the logarithms in Eq. (62) by a Taylor series and find that
1% 1) Ar
vi A
52 ( ) - — (63)

- ]
Vj — Uy 21),'

where 7 and j are m, m — 1, or m — 2 as indicated by Eq. (62). Note that §; = 6, =
Ar/2v,- the transit time from €, to €4 is approximated by 6. := 61 + 62 = Ar/vm—_1;
this will be used to define the appropriate components of #".

We now turn our attention to approximation of the strain. Let

t+At
K :=/ ve (z(t), t')dt" . (64)
t
We use a first-order approximation to the integral:

o) Atve(Eq,t) 6 > At (65)
T b1v(Ea,t) + (At = 8)v(Euyt) 6 S At
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The two cases represent the situation in which the particle at the centroid of a given
element stays in the same element during one time step and the case in which it passes
into the next element upstream, respectively.

Note that x = O(At) during a single time step, and thus a Taylor series expansion
for the strains of Eq. (48) is appropriate. The appropriate strains and their Taylor series
approximations are then

E? = exp(2ak) & 1 + 2ax s=T7T
E? .— { 11 P( ) (66)

E}, =exp(—ak)Z1l-ak s=w.

The following definitions will allow us to specify the ODQ algorithm for a generic stress
equation:

o At 2 s=rT K
= I = b = A7 g
r ~ c { 1 sew caAt (67)

Note that |b] = O(1) with respect to At, and & = 0 in the corotational [3], or a = 0 case.
In terms of b, a generic strain, F is

E? =1+bAt . (68)

We define a generic stress (either 7 or @), Sm—1/2» at time-level n and staggered grid point
m — 1/2. The appropriate generic component of 7", §", is defined using r, which can be
scen to be the fraction of the transit time from one element centroid to the next that is
covered in one time step. Stability restrictions discussed in the next section essentially
assure that r < 1. §" is defined by

§"i=(l=r)sp_1j2 +TSpz2 - (69)

We use Eq. (69) and take the two stress equations in the form of Eq. (53); the ODQ
method for a generic stress equation is

ML (14 bA) (1 =r)s® | +rs”

- _3
m-— m 7 m 2

(361 P=

At = —S:l_% +C(Ut):ln_% . (70)

Note that the whole left side of the stress equations in Eq. (53) is approximated by the
ODQ. For the purposes of analysis, we rearrange Eq. (70) as follows:

Sn+l .M n n

S S._1 7S 3
m=3 mTy _ut m—3j m=3
At m -1 Az
v,';_,bAt 2 2 —(1=b)s" | +c(v)"
o Az D m-3 m—
added term
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The ODQ method in this simple problem, with the approximations we have made for
transit times and strains is a modified backward difference scheme along the streamline.
It reduces to a simple backward difference scheme in the corotational case.

C. Stability analysis: For the purposes of stability analysis, we first study the corotational
case where a = 0. It is not clear whether this case is physically relevant to actual polymer
systems, but the equations are more tractable, and the results of the analysis of this case
admit to a straight-forward modification for a # 0 that works well in practice. In thea = 0
case, the discretization of the area equation and ODQ treatment of the stress equations
reduces to a backward difference method for the whole system. Since the wave speeds are
all v, inspection of Eqs. (50) suggests that a stability bound of At < Ar/v is sufficient.
This 1s because, as will be illustrated in the subsequent analysis, the principal part of the
system usually dominates the stability bound, while the source terms contribute the effect
of an change of O(Ax) in v in the conventional bound. Since the conventional bound
is slightly pessimistic, a stable and accurate time step can usually be obtained by using
a modest safety factor. This is not the case here when ¢ is small. First, consider the
linearized area equation,

. 64 A, [F 64 AL ~
oA = —véd, + ?:;N + 3:— ; (IA_z + 5N> dx' + Eé-\ , (72)

where the varied quantities are preceded by “6,” and the expansion point by corresponding
quantities without és. The four terms on the right-hand side have the following description:
principal part (highest order term). intermediate order source term, low-order (integral)
source ternl. and coupling term (intermediate order), respectively. First we consider the
behavior of the linearized area equation uncoupled from the stress equations by taking
0N = 0. A standard Neumann analysis [24,25] shows that the backward difference method
applied to the linearized arca equation is stable in the sense required for convergence
[253(p. 42)] if the conventional bound on At is enforced. This restriction. however. allows
unbounded growth for + — oo on a fixed grid. due to growth of low frequency disturbances.
This arises from the fact that the intermediate order term (with coeflicient proportional
to V) is typically positive. Numerical experiments with the backward difference method
applied to Eq. (72) show that the integral term is not sufficient to eliminate the growth
of low frequency disturbances. Such unbounded growth can be ruled out by the coupling
terms, if the linearized stress equations governing 6.V are stably integrated. We turn our
attention to a criterion, based on the stress equations alone, that will prevent blow up
of discrete solutions as t — oc. We pursue this course since we are interested in finding
steady solutions on fixed grids.

A simple bound can be derived by further uncoupling the stress equations fr m each
other. This bound turns out not to be sufficient, but it illustrates the essence of the
problem. We lincarize a typical stress equation and set the perturbed quantities from
other equations to zero, and, as in the case of the arca equation, we ignore the variation
of the velocity that is reflected in the lowest order (integral) term. Letting ¢ := -2—;— and
considering a disturbance of wave number w /7 in a standard Neumann analysis, yiclds a
growth function. p. given by

(O]
[S%)




p=1-qv+ quexp(—iwAz) — At (1+:‘3_C1> ’ (73)

<

where v is the velocity field of the expansion point of the linearization. We note that |p|
is bounded by 1 for w = 0 if At <2/ (1 + 13561), this restriction is always superseded by

the bound arising from wAz = +7 (wave number 1/Az), which turns out to be the most
unstable mode. This is

At < Az : (7T4)

v+ (1+1) 4

The bound is most stringent where v is maximum, usually at z = 1.

There seems to be no accuracy requirement to make Ar < ¢; good results will be
exhibited below in cases where quite the opposite is true. Yet in such cases, the bound of
Eq. (74) 1s much smaller than the conventional bound. and this cannot be avoided in this
explicit formulation. What we see is another manifestation of the extreme stiffness induced
by a small amount of Newtonian viscosity; in the semi-implicit shear-flow algorithm. it
only affects accuracy during those periods of dynamic response when the “Newtonian”
time scale 1s active. In the explicit fiber-drawing algorithm, it affects stability, and the
Newtonian time scale must be respected at all times. Since this stiffness arises from the
competition of the wave speeds of the principal part with the time scale inherent in the

source terms, we have dubbed it “source term stiffness.”
Numerical experiments show that the bound of Eq. (74) is over-optimistic by roughly
a factor of 3/2. We write the coupled stress equations in matrix form.

{C‘:’I,ﬂ/’z} = {('1’7’1—1/2} —tq ({U:z—l/'z} - {l'rrrll—fl/'l}> - % (5] {L.,:_l/g} N i)

where
_9 2 _
[B] = =3 [I] + . (76}
1 -1
The discrete system (735) is diagonalizable, and the result is an uncoupled systen:
standard Neumann analysis can be carried out. giving a bound analogous to Eq. (74). in
which the 1 4+ '3—": in the denominator of Eq. (74) is replaced by the magnitude of the most
negative eigenvalue of :5'—5[6] The result is
Ar
At < . (77
~ v 1y ar
v+ (1 + e) 2

We note that this is the same bound that would result subtracting the two stress
equations to prodnce a single equation for N. The second eigenvalue of [B] is O(1) (with
respect to 2) and is irrelevant to stability. The same trick of combining the equations
wonld not work in the case a # 0, so that the matrix analysis is necessary. We linearize
Eq. (71); as can be seen from the bound of Eq. (77), and as will be evident in the numerical
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results presented below, the crucial terms for stability analysis are those of order O(c™!).
The only terms in the discrete equations (71) with a # 0 that differ from our previous
analysis that we chose to include are those of order O(¢71). These include the terms of
order O(s~!) already accounted for in the analysis of the corotational case and additional
terms arising from “6b.” Furthermore, among those terms, those that arise from linearizing
the “added term” in Eq. (71) are O(At) smaller than those obtained from linearizing the
source term (1 — b)s"m_l/2, so we ignore the former and include only the latter. We note
that this admittedly ad-hoc procedure is equivalent to retaining only O(¢™!) terms in the
linearization of Egs. (56) and applying a backward difference scheme (without the “added
term”) to the result; this has the effect of replacing [B] by

o ~2(1+ar) 2(1+ ar) .
[B] = =3 UH[ (14 aw) —(1+aw)] (78)
resulting in the modified bound,

At < A (79)

= + <1+ 1+a(r—-—))

The reason we opt for this ad-hoc bound is that it provides a simple modification of the
bonnd of Eq. (77) and avoids the solution of a quadratic equation at each time step, which
would be necessitated by a consistent analysis. As demonstrated in the next subsection.
this bound is very good for a = 0 and only slightly pessimistic for a # 0. We should also
poiut out that. from Eqs. (63) and (71) and from the fact that the added term in Eq. (71)
15 O(Af) 1t s an easy matter to verify that the ODQ method is consistent but no more
than first order accurate.

D. Numerical resuits: Figs. 10 — 13 summarize the stability and accuracy of the ODQ
method for fiber drawing. For a discussion of the nature of the results and their physical
interpretation, see Ref. [22]. The results displayed in these figures were obtained by using
the bound of Eq. (79) to compute a virtually steady solution. which was saved for the
stability and accuracy studies. The “true” stable time step, labelled At on the plots, was
obtained by interval halving from a bracket obtained by incrementing the bound of Eq. (79)
by a sufficient amount to obtain an unstable step. The At reported is the last stable time
step observed at the point where the bracket had been reduced to a small enough size to
make no difference to graphical accuracy. The stable time step thus calculated applies
ouly to the specific steady solution involved, but the bound of Eq. (79) has been found
to be sufficient for stability throughout dynamic processes leading to steady solutions.
The convergence plots were obtained frora an estimate of the exact solution obtained by
Richardson extrapolation to O{Az®). Since the expected accuracy is first order, and the
extrapolations to second order agree very closely with the extrapolations to third order.
the assumption that the values extrapolated to third order are exact with respect to the
raw, first order results seems well-justified. Note that the plotted errors are absolute errors,
and the relative errors are quite acceptable with 100 grid cells.

There are two major points to be made, based on the numerical resuits: First, the
stability bound of Eq. (79) works well, and second. with small ¢, acceptably accurate
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Fie. 10. Mesh Refinement Scudies — Corotational (a = 0) Case:
rA) Actual At. compared At predicted by the stability bound of
Eq. (79). and to the usual wave-speed bound. in the for the ¢ =1
caze. (B} Convergence rate of maximum values of key quantities to
the value obtained by multi-mesh extrapolation. Slope is essentially
-1. indicating a first-order method.

resnlts are obtained long before the conventional bound of At < Ar/v becomes useful
cn very Hne meshes; thus, the bound of Eq. (79) is necessary to obtain solutions in the
practical operating range of the method. Fig. 10 shows the corotational case with a large
=1 there is no stiffness in this case, and as indicated in panel (A), the coaventional bound
becomes adequate on meshes of 80 grid points or more and could be used generally with
a modest safety factor. The expected first order conveygence rate with grid refinement is
confirmed here and in all other cases. The stability situation is markedly different with
small =, as illustrated in Fig. (11). With 80 to 100 grid points, where solution accuracy
is quite good. the stability bound of Eq. (79) is very sharp and differs substantially {rom
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Fig. 11. Mes<h Refinement Studies — Corotational (a = 0) Case:
(A) Actual At. compared At predicted by the stability bound of
Eq. (79). and to the usnal wave-speed bound, in the for the s = 0.01
case. (B) Convergence rate of maximum values of key quantities to
the value obtained by multi-mesh extrapolation. Slope is essentiallv
-1, mdicating a first-order method.

the conventional bound: steady solutions could not be obtained on such grids using the
conventional bound.

In the upper convected case with large ¢ shown in Fig. (12), the conventional bound
i~ conzervative, and the bound of Eq. (79) is slightly more so, but both bounds do well.
When 2 is small (Fig. (13)). the conventional bound is over optimistic until the grid has
G40 points. The bound of Eq. (79) is slightly conservative, but does well throughout this
range. For grids finer than 640 points, it appears that, as with the large ¢ case. the
conventional bound is becoming a viable bound, slightly less pessimistic than the bound
of Eq. (79): however for very fine grids, both bounds are essentially the same. From a
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-1, indicating a first-order method.

practical standpoint. the bound of Eq. (79) is sufficient throughout the range of realistic
grids and is always relatively sharp.

5. CONCLUSIONS

Much of what we know about the spurt pheasomenon in Poiseuille flow is now accessible
to analysis but was first uncovered by numerical simulation.  We hope that a similar
situation will come about in the analysis of step-strain experiments. Our preliminary
numerical investigation suggests that a deeper analysis using non-monotone constitutive
equations would be worthwhile.  From a rheological point of view, it is important to
discover whether the failure to satisfy the Lodge-Meissner relation is an indication of
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defect in the constitutive equation, as is widely believed, or the failure represents a success
of the constitutive equation in predicting a new kind of material respons< to step strains
that can occur in certain (perhaps extreme) conditions. Our numerical simulations have
made the connection between material response in step strain and the spurt phenomenon

that may prove important in resolving this rheological controversy.

From a technical point of view, the major conclusion is that the Newtonian time
scale must always be respected. When this is very short compared to the dominant rclax-
ation time, the resulting stiffness affects accuracy alone for the implicit-explicit shear flow

28




method. This stiffness affects stability and accuracy for the ODQ method. In either case,

At

(@4

=1

10.

1.

o

= O(¢) is often called for. Fortunately, however, in the problems we have solved so
far, mesh size scales of O(e) have not been found necessary; in fact, the major techuical
problem with source term stiffness is that quite accurate solutions can be obtained on grids
that are not fine enough to render the conventional bound on At useful.

The ODQ method seems to show some promise. The results we have obtained so far

lead us to believe that further study of the ODQ method is warranted.
Acknowledgment: The authors are grateful to M. W. Johnson, B. J. Plohr, and J. A. Nohel
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